191 research outputs found

    Benefits of past inventory data as prior information for the current inventory

    Get PDF
    When auxiliary information in the form of airborne laser scanning (ALS) is used to assist in estimating the population parameters of interest, the benefits of prior information from previous inventories are not self-evident. In a simulation study, we compared three different approaches: 1) using only current data, 2) using non-updated old data and current data in a composite estimator and 3) using updated old data and current data with a Kalman filter. We also tested three different estimators, namely i) Horwitz-Thompson for a case of no auxiliary information, ii) model-assisted estimation and iii) model-based estimation. We compared these methods in terms of bias, precision and accuracy, as estimators utilizing prior information are not guaranteed to be unbiased.202

    The effects of temporal differences between map and ground data on map-assisted estimates of forest area and biomass

    Get PDF
    International audienceAbstractKey messageWhen areas of interest experience little change, remote sensing-based maps whose dates deviate from ground data can still substantially enhance precision. However, when change is substantial, deviations in dates reduce the utility of such maps for this purpose.ContextRemote sensing-based maps are well-established as means of increasing the precision of estimates of forest inventory parameters. The general practice is to use maps whose dates correspond closely to the dates of ground data. However, as national forest inventories move to continuous inventories, deviations between map and ground data dates increase.AimsThe aim was to assess the degree to which remote sensing-based maps can be used to increase the precision of estimates despite differences between map and ground data dates.MethodsFor study areas in the USA and Norway, maps were constructed for each of two dates, and model-assisted regression estimators were used to estimate inventory parameters using ground data whose dates differed by as much as 11 years from the map dates.ResultsFor the Minnesota study area that had little change, 7-year differences in dates had little effect on the precision of estimates of proportion forest area. For the Norwegian study area that experienced considerable change, 11-year differences in dates had a detrimental effect on the precision of estimates of mean biomass per unit area.ConclusionsThe effects of differences in map and ground data dates were less important than temporal change in the study area

    A method for continuous sub-annual mapping of forest disturbances using optical time series

    Get PDF
    Forest disturbances have a major impact on ecosystem dynamics both at local and global scales. Accordingly, it is important to acquire objective information about the location, nature and timing of such events to improve the understanding of their impact, update forest management policies and disturbance mitigation strategies. To this date, remotely sensed data have been widely used for the detection of stand replacing disturbances (SRD) such as windthrows and wildfires. In contrast, less effort has been devoted to the detection of non-stand replacing disturbances (NSRD), typically characterized by slower and gradual temporal dynamics. To address this gap, we propose a method for the automated detection of both SRD and NSRD. The proposed method can detect both past and recent disturbances, with a monthly temporal resolution, in a near real-time fashion by processing new images as they are acquired. Differently from existing approaches that handle the time series as a one-dimensional (1D) temporal trajectory, the method analyzes the sequence of images by organizing them in a two-dimensional (2D) grid-like structure. This representation allows us to model both the intra- and inter-annual variations of the time series taking advantage of the annual cyclical nature of the plant phenology. The method has been tested on study areas attacked by bark beetles achieving a user’s accuracy and producer’s accuracy of 0.91±0.08 and 0.81±0.07 (with 95% confidence intervals) for the disturbed areas, respectively

    Prediction of Timber Quality Parameters of Forest Stands by Means of Small Footprint Airborne Laser Scanner Data

    Get PDF
    The aim of this study was to explore the capability of airborne laser scanner (ALS) data to explain the variation in field-measured variables representing timber quality within square 0.25 ha grid cells in a mature conifer forest in the southeast of Norway. These variables were the mean ratio between stem diameter at six m above ground and the diameter at breast height (R D6 ), the volume of saw logs (V SL ), the proportion of saw logs relative to the total volume (P SL ), the ratio between tree height and diameter at breast height (HD), mean basal area diameter (D g ), and crown height (CH). Each of these variables was modeled using a mixed modeling approach. Model fit was expressed by the Pseudo-R 2 , and were 0.85, 0.50, 0.78, 0.57, 0.74, and 0.58 for the respective quality variables. Furthermore, much of the residual error could be attributed to the different forest stands from which the grid cells originated even though we used field-observed tree species proportions as auxiliary information. It was concluded that more auxiliary information is needed to estimate models that are general across stands, but that the relationships between ALS-data and the quality variables considered here seem strong enough to be utilized for example to prioritize between stands in relation to harvest when specific quality distributions are sought

    On the Potential of Sequential and Nonsequential Regression Models for Sentinel-1-Based Biomass Prediction in Tanzanian Miombo Forests

    Get PDF
    This study derives regression models for aboveground biomass (AGB) estimation in miombo woodlands of Tanzania that utilize the high availability and low cost of Sentinel-1 data. The limited forest canopy penetration of C-band SAR sensors along with the sparseness of available ground truth restricts their usefulness in traditional AGB regression models. Therefore, we propose to use AGB predictions based on airborne laser scanning (ALS) data as a surrogate response variable for SAR data. This dramatically increases the available training data and opens for flexible regression models that capture fine-scale AGB dynamics. This becomes a sequential modeling approach, where the first regression stage has linked in situ data to ALS data and produced the AGB prediction map; we perform the subsequent stage, where this map is related to Sentinel-1 data.We develop a traditional, parametric regression model and alternative nonparametric models for this stage. The latter uses a conditional generative adversarial network (cGAN) to translate Sentinel-1 images into ALS-based AGB prediction maps. The convolution filters in the neural networks make them contextual. We compare the sequential models to traditional, nonsequential regression models, all trained on limited AGB ground reference data. Results show that our newly proposed nonsequential Sentinel-1-based regression model performs better quantitatively than the sequential models, but achieves less sensitivity to fine-scale AGB dynamics. The contextual cGAN-based sequential models best reproduce the distribution of ALS-based AGB predictions. They also reach a lower RMSE against in situ AGB data than the parametric sequential model, indicating a potential for further development

    Detection of heartwood rot in Norway spruce trees with lidar and multi-temporal satellite data

    Get PDF
    Norway spruce pathogenic fungi causing root, butt and stem rot represent a substantial problem for the forest sector in many countries. Early detection of rot presence is important for efficient management of the forest resources but due to its nature, which does not generate evident exterior signs, it is very difficult to detect without invasive measurements. Remote sensing has been widely used to monitor forest health status in relation to many pathogens and infestations. In particular, multi-temporal remotely sensed data have shown to be useful in detecting degenerative diseases. In this study, we explored the possibility of using multi-temporal and multi-spectral satellite data to detect rot presence in Norway spruce trees in Norway. Images with four bands were acquired by the Dove satellite constellation with a spatial resolution of 3 m, ranging over three years from June 2017 to September 2019. Field data were collected in 2019–2020 by a harvester during the logging: 16163 trees were recorded, classified in terms of species and presence of rot at the stump and automatically geo-located. The analysis was carried out at individual tree crown (ITC) level, and ITCs were delineated using lidar data. ITCs were classified as healthy, infested and other species using a weighted Support Vector Machine. The results showed an underestimation of the rot presence (balanced accuracy of 56.3%, producer’s accuracies of 64.3 and 48.4% and user’s accuracies of 81.0% and 32.7% respectively for healthy and rot ITCs). The method can be used to provide a tentative map of the rot presence to guide more detailed assessments in field and harvesting activitie

    Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data

    Get PDF
    5openInternationalInternational coauthor/editorWood decay caused by pathogenic fungi in Norway spruce forests causes severe economic losses in the forestry sector, and currently no efficient methods exist to detect infected trees. The detection of wood decay could potentially lead to improvements in forest management and could help in reducing economic losses. In this study, airborne hyperspectral data were used to detect the presence of wood decay in the trees in two forest areas located in Etnedal (dataset I) and Gran (dataset II) municipalities, in southern Norway. The hyperspectral data used consisted of images acquired by two sensors operating in the VNIR and SWIR parts of the spectrum. Corresponding ground reference data were collected in Etnedal using a cut-to-length harvester while in Gran, field measurements were collected manually. Airborne laser scanning (ALS) data were used to detect the individual tree crowns (ITCs) in both sites. Different approaches to deal with pixels inside each ITC were considered: in particular, pixels were either aggregated to a unique value per ITC (i.e., mean, weighted mean, median, centermost pixel) or analyzed in an unaggregated way. Multiple classification methods were explored to predict rot presence: logistic regression, feed forward neural networks, and convolutional neural networks. The results showed that wood decay could be detected, even if with accuracy varying among the two datasets. The best results on the Etnedal dataset were obtained using a convolution neural network with the first five components of a principal component analysis as input (OA = 65.5%), while on the Gran dataset, the best result was obtained using LASSO with logistic regression and data aggregated using the weighted mean (OA = 61.4%). In general, the differences among aggregated and unaggregated data were smallopenDalponte, Michele; Kallio, Alvar J. I.; Ørka, Hans Ole; Næsset, Erik; Gobakken, TerjeDalponte, M.; Kallio, A.J.I.; Ørka, H.O.; Næsset, E.; Gobakken, T

    Optimizing nearest neighbour configurations for airborne laser scanning-assisted estimation of forest volume and biomass

    Get PDF
    Inferences for forest-related spatial problems can be enhanced using remote sensing-based maps constructed with nearest neighbours techniques. The non-parametric k-nearest neighbours (k-NN) technique calculates predictions as linear combinations of observations for sample units that are nearest in a space of auxiliary variables to population units for which predictions are desired. Implementations of k-NN require four choices: a distance or similarity metric, the specific auxiliary variables to be used with the metric, the number of nearest neighbours, and a scheme for weighting the nearest neighbours. The study objective was to compare optimized k-NN configurations with respect to confidence intervals for airborne laser scanning-assisted estimates of mean volume or biomass per unit area for study areas in Norway, Italy, and the USA. Novel features of the study include a new neighbour weighting scheme, a statistically rigorous method for selecting feature variables, simultaneous optimization with respect to all four k-NN implementation choices and comparisons based on confidence intervals for population means. The primary conclusions were that optimization greatly increased the precision of estimates and that the results of optimization were similar for the k-NN configurations considered. Together, these two conclusions suggest that optimization itself is more important than the particular k-NN configuration that is optimized
    • …
    corecore